

Contemporary approaches to gastrointestinal stromal tumor: surgical considerations

Raphael Pollock, MD, PhD

Division of Surgical Oncology

Department of Surgery

Ohio State University Wexner Medical Center

Columbus, Ohio

The Ohio State University Health Care System

James Cancer Hospital
University Hospital
Ross Heart Hospital
University East Hospital
OSU Eye and Ear Institute
OSU Surgicenter
Brain and Spine Institute

320 faculty surgeons >41,000 operations annually

To be discussed:

General considerations

Use of neoadjuvant therapies in primary GIST

Specific surgical issues

Use of adjuvant therapies in primary GIST

Treatment of recurrent/metastatic GIST

General considerations

~ 1-2% of all GI malignancies:

Stomach 50-70%

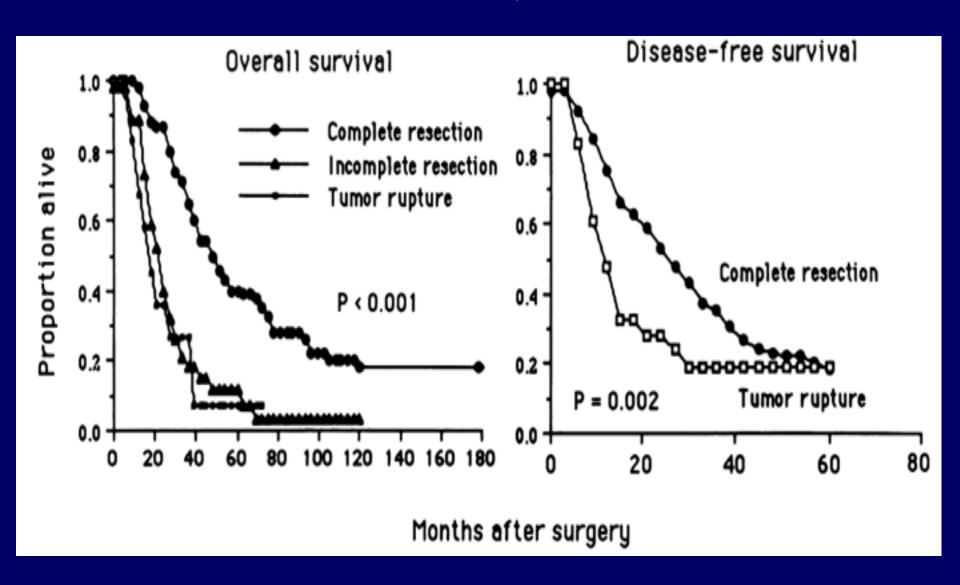
Small intestine 25-35%

Colo-rectum 5-10%

Esophagus <5%

Those who do not know history are doomed to repeat it!

Prognostic Factors Influencing Survival in Gastrointestinal Leiomyosarcomas

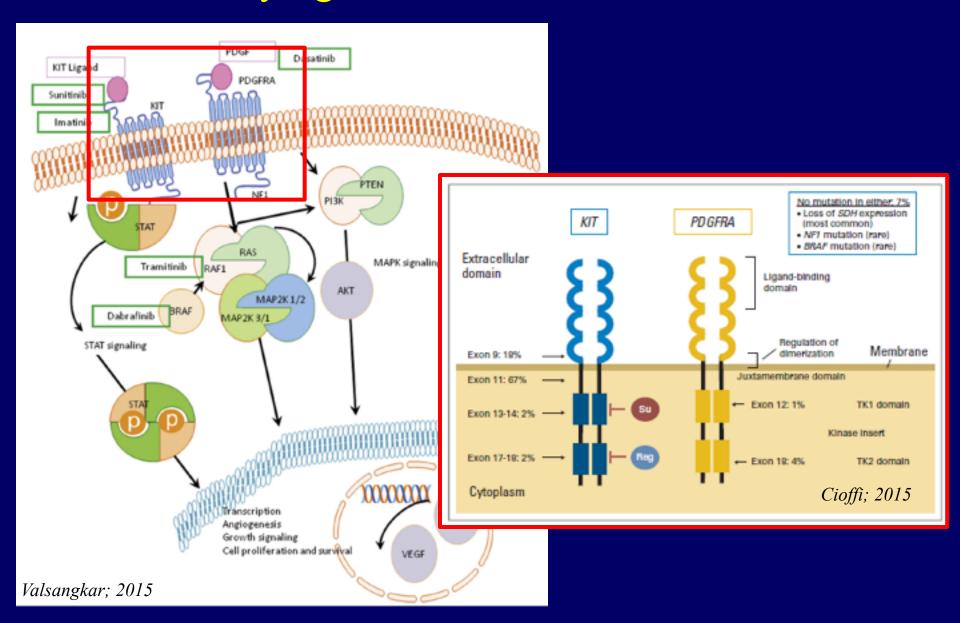

Implications for Surgical Management and Staging

ENG-HEN NG, M.D.,* RAPHAEL E. POLLOCK, M.D., Ph.D.,* MARK F. MUNSELL, M.S.,† EDWARD N. ATKINSON, Ph.D.,† and MARVIN M. ROMSDAHL, M.D., Ph.D.*

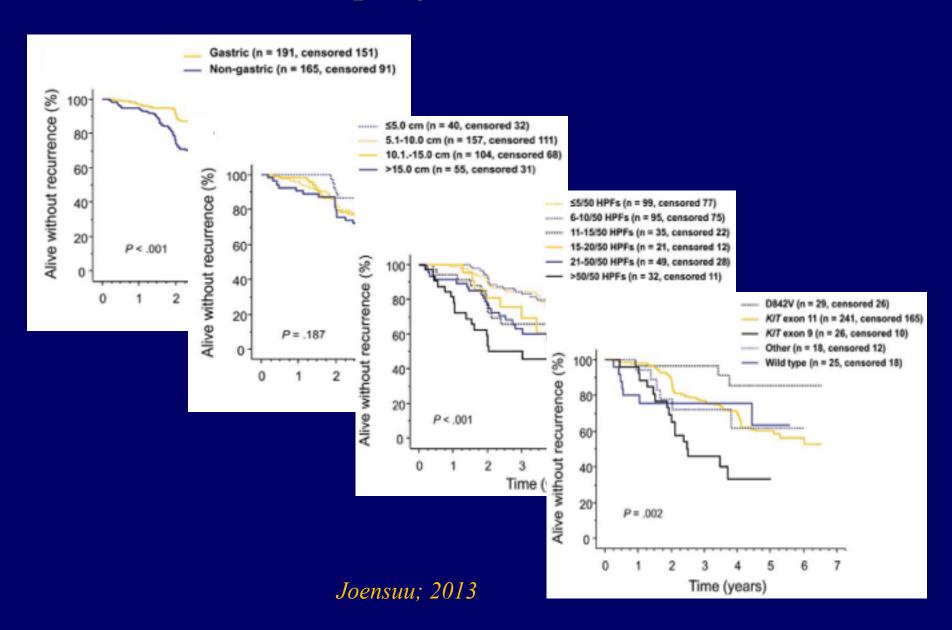
From the Departments of Surgery* and Biomathematics,†
the University of Texas M. D. Anderson
Cancer Center, Houston, Texas

Ann Surg 215:68-77; 1991

OS/DFS ~ 20% at five years; circa 1991



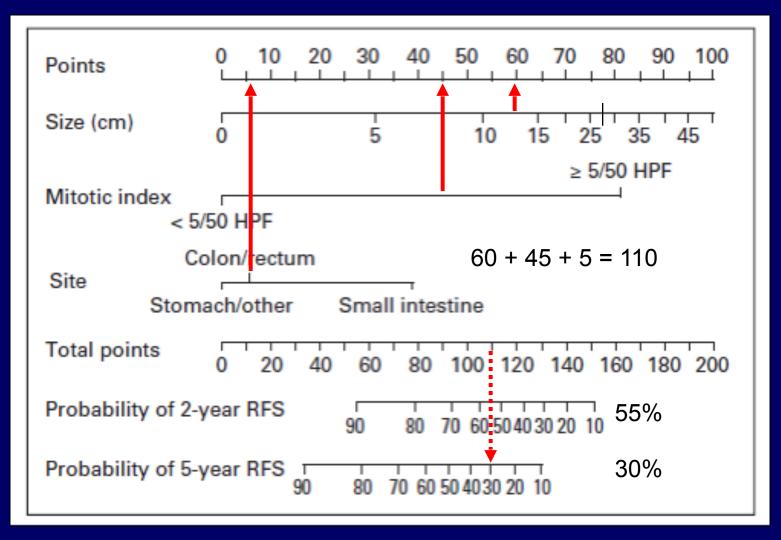
Key GIST landmarks


1998 Hirota identifies kit mutations in GIST and that GIST arises from interstitial cells of Cajal

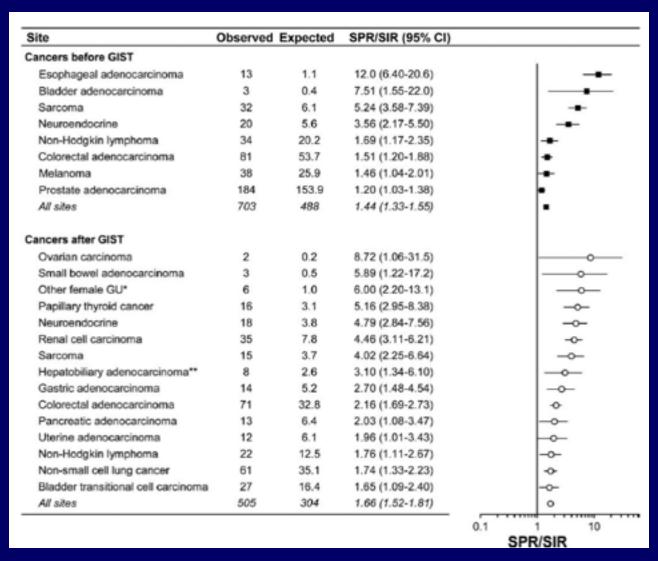
2000 Joensuu treats first patient with imatinib

Underlying molecular considerations

GIST prognostic factors



Risk stratification of primary GIST by mitotic index, size, and site


<u>Tumor Parameters</u>		Risk of Progressive Disease (%)						
Mitotic Index	<u>Size</u>	<u>Gastric</u>	<u>Duodenum</u>	Jejunum/Ileum	<u>Rectum</u>			
< 5 per 50 hpf	< 2 cm	None (0%)	None (0%)	None (0%)	None (0%)			
< 5 per 50 hpf	> 2 < 5 cm	Very low (1.9%)	Low (4.3%)	Low (8.3%)	Low (8.5%)			
< 5 per 50 hpf	> 5 < 10 cm	Low (3.6%)	Moderate (24%)	(Insuff. data)	(Insuff. data)			
< 5 per 50 hpf	> 10 cm	Moderate (10%)	High (52%)	High (34%)	High (57%)			
> 5 per 50 hpf	< 2 cm	None	High	(Insuff. data)	High (54%)			
> 5 per 50 hpf	> 2 < 5 cm	Moderate (16%)	High (73%)	High (50%)	High (52%)			
> 5 per 50 hpf	> 5 < 10 cm	High (55%)	High (85%)	(Insuff. data)	(Insuff. data)			
> 5 per 50 hpf	> 10 cm	High (86%)	High (90%)	High (86%)	High (71%)			

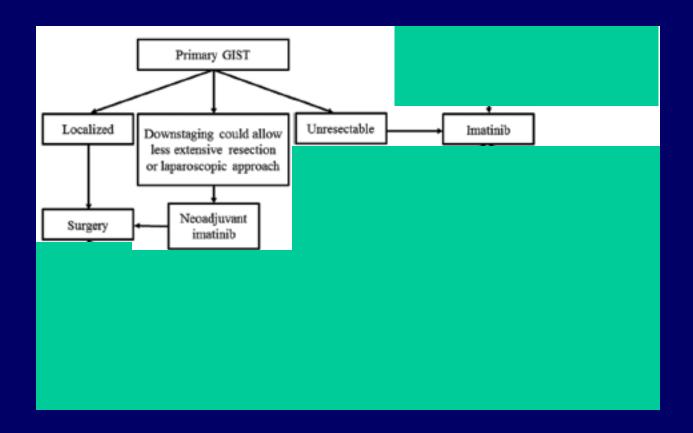
Demetri; 2007

MSKCC nomogram for post-resection primary GIST RFS

Other malignancies are associated with GIST

To be discussed:

General considerations


Use of neoadjuvant therapies in primary GIST

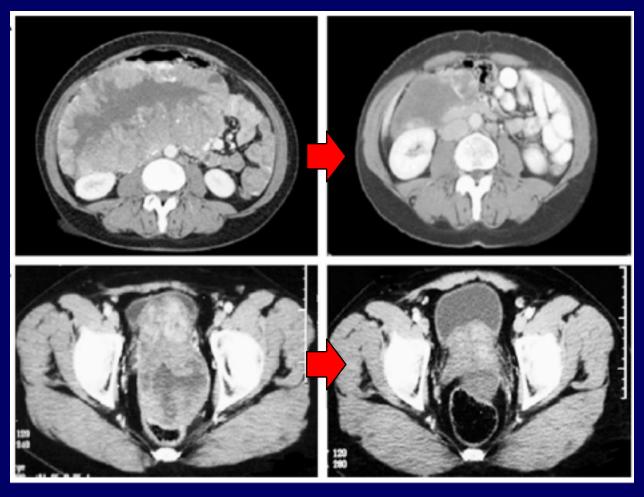
Specific surgical issues

Use of adjuvant therapies in primary GIST

Treatment of recurrent/metastatic GIST

Approach to primary GIST

Neoadjuvant approaches to primary GIST


Three large phase II clinical trials: preoperative imatinib significantly improves outcomes in patients with unfavorable GIST (RTOG 0132; MD Anderson; German Apollon study)

No phase III trials with control arm evaluating neoadjuvant imatinib; long term survival benefit of neoadjuvant approaches uncertain

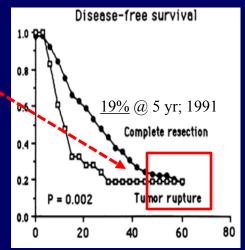
Localized GIST: resect if can be done w/o extensive resection. Otherwise imatinib until no further cytoreduction seen on two successive scans or progression despite dose escalation

Best imatinib responses by 28 weeks; plateau at 34 weeks (Tirumani; 2014)

Neoadjuvant approaches to primary GIST

Baseline

After neoadjuvant imatinib


Fiore; 2009

Relationship between kinase genotype, imatinib response, and outcome for advanced GIST patients

	B2222	EORTC-Australasian	SWOG S0033		
	Phase II	Phase III	Phase III		
Objective response (recist	<u>criteria)</u>				
KIT exon 11	83%	70%	67%		
<i>KIT</i> exon 9	48%	35%	40%		
No mutation	0%	25%	39%		
Progressive disease					
KIT exon 11	4.7%	3.2%	NR		
<i>KIT</i> exon 9	17.4%	17.2%	NR		
No mutation	55.6%	19.2%	NR		

Neoadjuvant approaches to primary GIST

Surgical outcomes in neoadjuvant-treated GISTs

Incidence of R0/R1 resections in GIST patients treated neoadjuvantly:

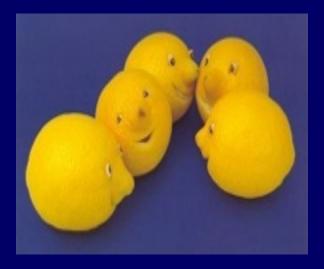
- •Stable disease: 78% achieved R0/R1 margins
- •Limited disease progression: 25% achieved R0/R1 margins
- •Generalized disease progression: 7% achieved R0/R1 margins

To be discussed:

General considerations

Use of neoadjuvant therapies in primary GIST

Specific surgical issues

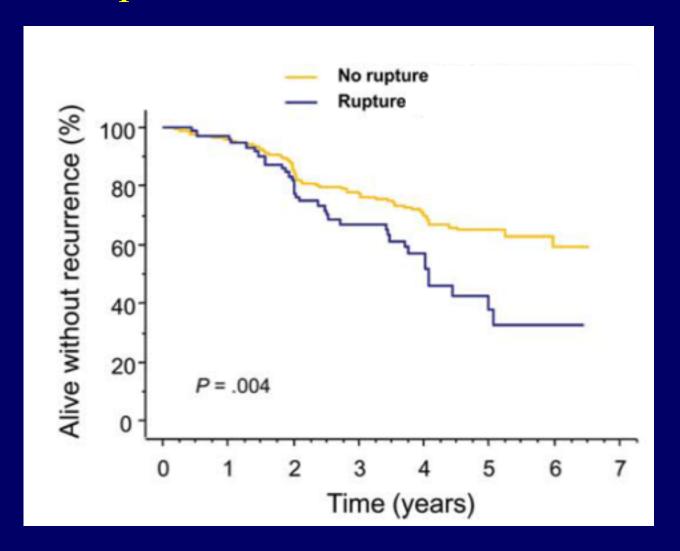

Use of adjuvant therapies in primary GIST

Treatment of recurrent/metastatic GIST

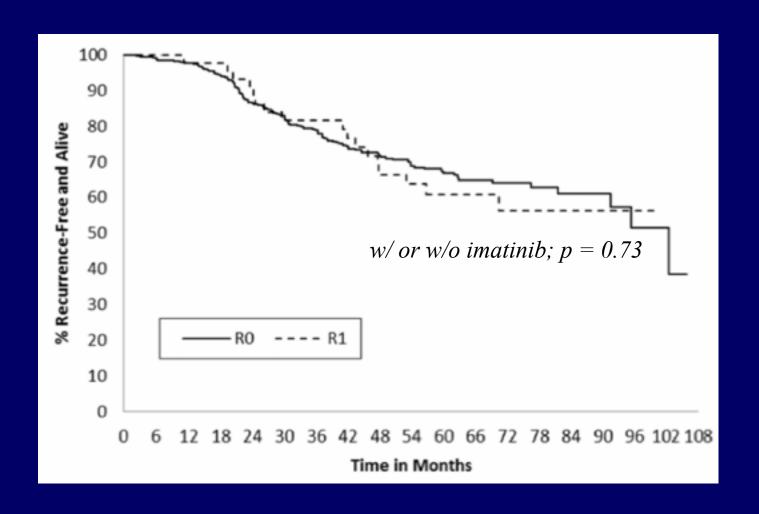
Surgical strategies for primary GIST management

Before surgery:

- ✓ Comprehensively understand the natural history of GIST
- Develop multi-disciplinary treatment plan prior to surgical intervention
- Thoroughly review plan, options, and strategy with patient and family
- Recruit other needed surgical specialists



Surgical strategies for primary GIST management


During surgery:

- ✓Incision for exposure; explore entire abdomen and pelvis
- Identify/control critical anatomy; delineate margins
- ✓En bloc resect all gross tumor w/ adherent structures; intact pseudo-capsule; avoid intra-op bleeding or rupture
- Lymphadenectomy not needed; contiguous organ invasion rare; frozen sections usually not useful
- ✓ Segmental resection usually sufficient to achieve R0/R1 margins
- Reoperation to convert R1 to R0 does not decreases recurrence

Surgical strategy: avoid intra-operative GIST rupture

Surgical strategy: R0 and R1 RFS equivalent

MIS: high R0/R1 and low recurrence rates

Summary of Retrospective Studies Investigating Outcomes of Laparoscopic Resection of Gastrointestinal Stromal Tumors (GIST)							
Author	N	Mean tumor size (cm)	Conversion rate (%)	Complication rate (%)	R0/R1 resection rate (%)	Mean follow-up (months)	Recurrence rate (%)
Novitsky [29] Otani [30] Sexton [32] Karakousis [33] De Vogelaere [34] Honda [35]	50 35 63 40 31 78	4.4 4.3 3.8 3.6 4.4 3.5	0 0 1.6 22.5 0 1.3	8 2.9 16.4 14 3.2 9	100 100 98.4 97.5 100 100	36 53 15 28 52 45.3	8 2.9 4.8 2.5 0 1.3

Fairweather; 2015

Surgical strategy: factors favoring MIS vs open approach to GIST

Logistic analysis examining preoperative factors associated with receipt of minimally invasive versus open surgery

	Univ	ariate analy	sis	Multivariate analysis		
	OR	95 % CI	p value	OR	95 % CI	p value
Age	1.00	0.98-1.01	0.61	-	-	-
Male gender	0.54	0.36-0.81	0.003	0.89	0.51-1.55	0.67
Size at diagnosis	0.76	0.69 - 0.83	< 0.001	0.78	0.70 - 0.86	< 0.001
Neoadjuvant TKI	0.24	0.08-0.73	0.01	1.14	0.30-4.33	0.85
Adjacent organ involvement	0.07	0.02-0.29	< 0.001	0.14	0.01-1.40	0.09
\Rightarrow BMI >30 kg/m ²	2.17	1.31-3.59	0.003	2.41	1.28-4.54	0.006

To be discussed:

General considerations

Use of neoadjuvant therapies in primary GIST

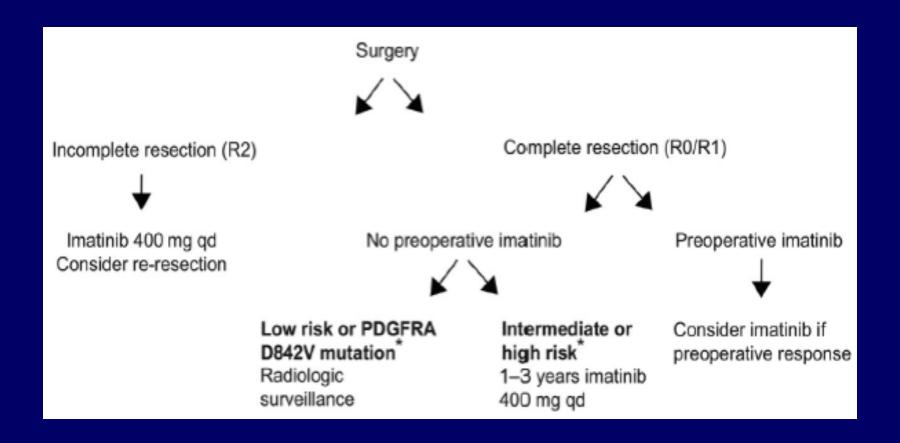
Specific surgical issues

Use of adjuvant therapies in primary GIST

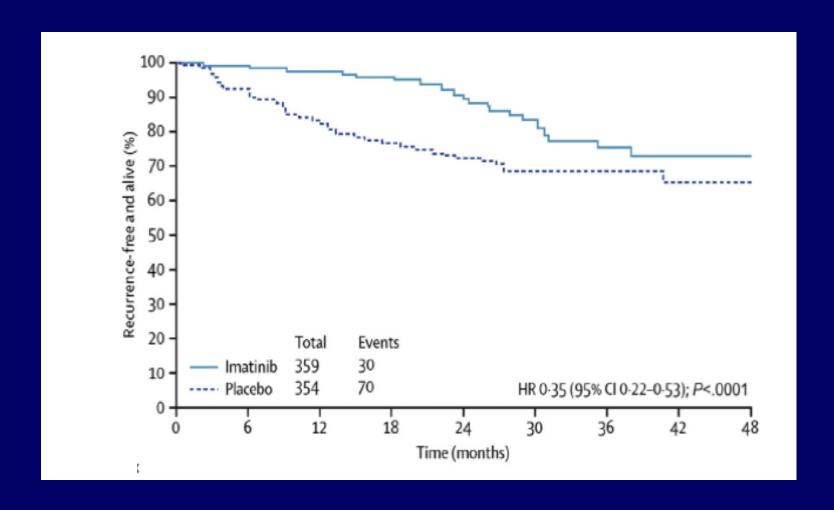
Treatment of recurrent/metastatic GIST

Rationale for adjuvant therapy

50% recur by 10 years after R0/R1 primary GIST resection:


10-15 cm 70% recur

< 50 mitoses/hpf 25% recur


> 50 mitoses/hpf 70% recur

Recurrences: 2/3 hepatic; 1/2 intra-peritoneal

Approach to adjuvant therapy after surgery for primary GIST

ACOSOG Z9001: one year of adjuvant imatinib vs placebo for GIST > 3cm

ACOSOG Z9001

Phase III trial: no difference in OS but improved RFS

Patients with larger tumors, small bowel origin tumors, tumors w/ > 5 mitosis/hpf had decreased RFS (placebo control group)

No benefit seen with adjuvant imatinib in *kit* wild type GIST tumor patients

Other adjuvant trials

Scandinavian Sarcoma Group (SSG XVIII):

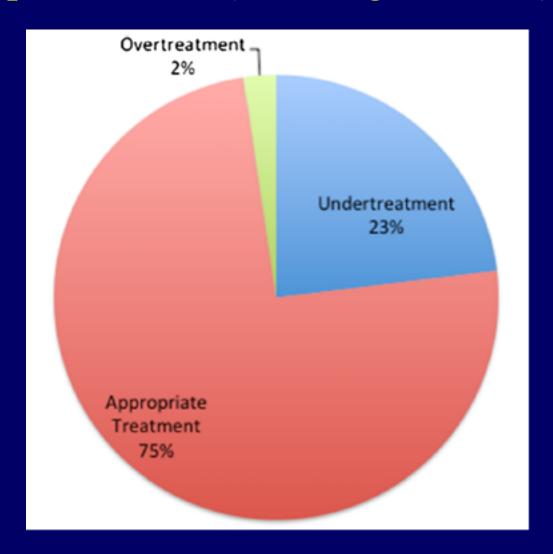
Phase III randomized trial; 1 vs 3 years adjuvant imatinib

1 year imatinib: 48% five year RFS

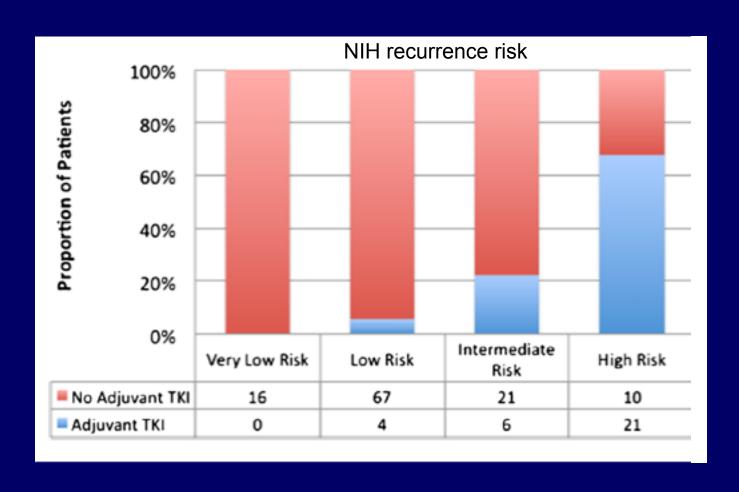
3 year imatinib: 66% five year RFS

Other adjuvant trials

EORTC 62024


Phase III randomized; 2 year imatinib vs observation

At 3 and 5 years:


RFS (but not OS) improved in imatinib group

Current NCCN guideline: patients w/ intermediate/high risk of recurrence: adjuvant imatinib for at least 3 years

Compliance with GIST adjuvant treatment can be problematic (NCCN guidelines)

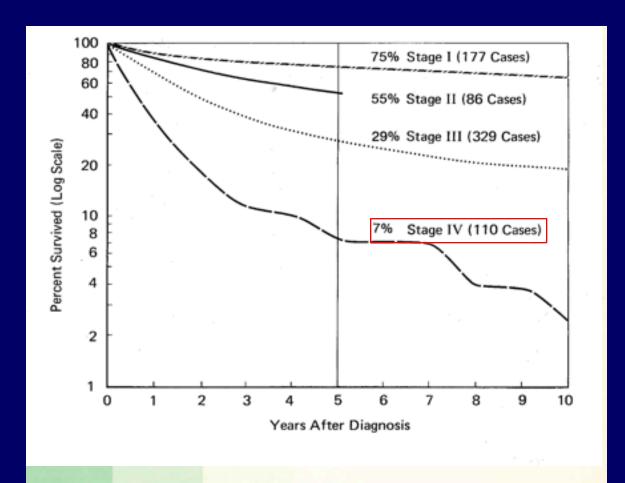
Even NIH high risk patients frequently do not receive optimal adjuvant treatment

How long should adjuvant treatment be continued?

PERSIST 5 is an ongoing phase II trial testing 5 years of adjuvant imatinib therapy in patients at moderate to high risk of recurrence (NCT00867113)

To be discussed:

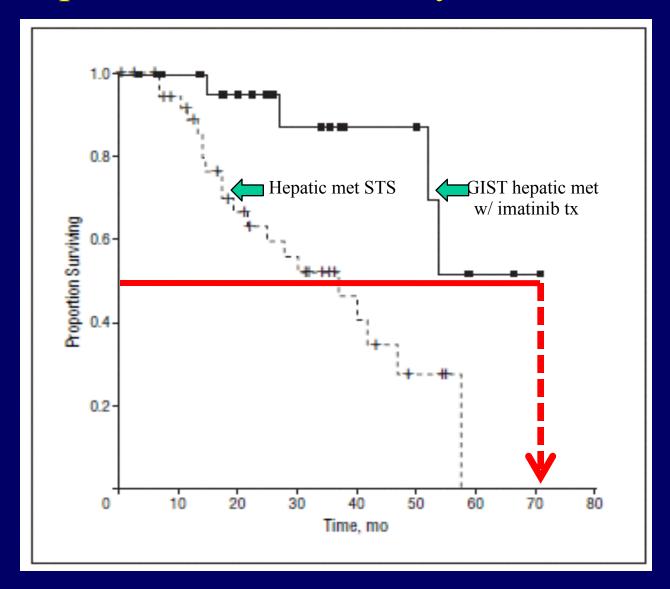
General considerations


Use of neoadjuvant therapies in primary GIST

Specific surgical issues

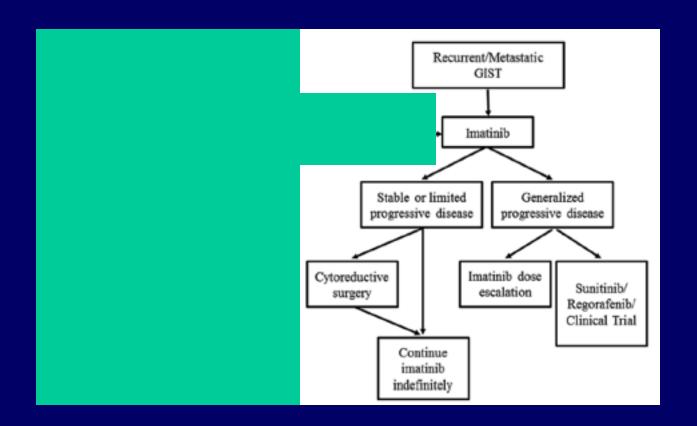
Use of adjuvant therapies in primary GIST

Treatment of recurrent/metastatic GIST


Historical experience: hepatic STS metastasectomy


AMERICAN JOINT COMMITTEE
FOR
STAGING AND END RESULTS REPORTING
TASK FORCE ON SOFT TISSUE SARCOMA

Reprinted from Manual for Staging of Cancer 1978


Hepatic metastatasectomy in GIST

Recurrent/metastatic/locally advanced GIST: less favorable prognosis than smaller local disease

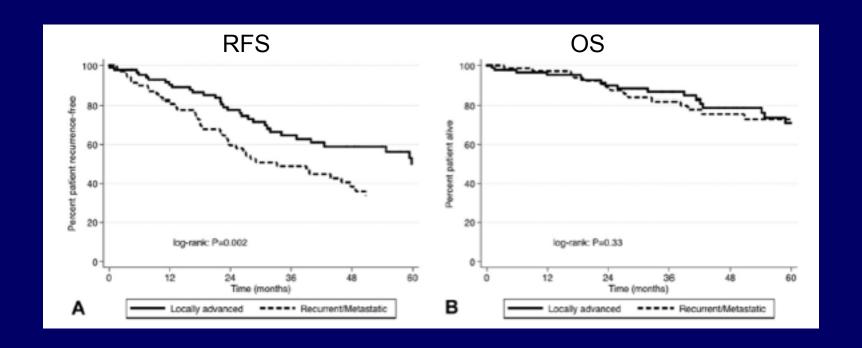
Approach to recurrent/metastatic GIST

Rationale for TKI in recurrent/metastatic disease

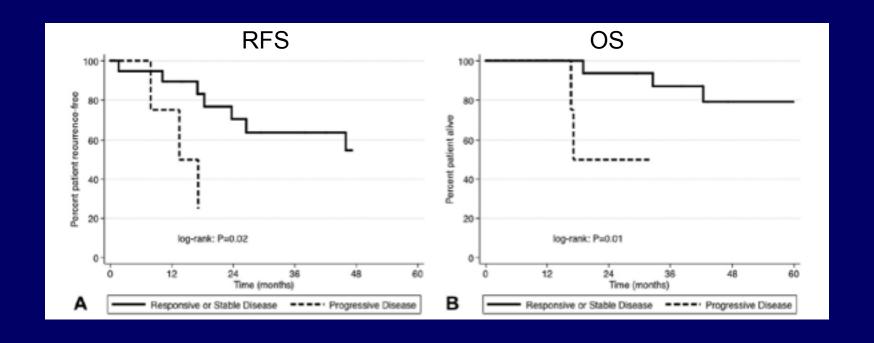
- Continue imatinib until disease progression (increase to 800 mg/day?) or treatment-related toxicities become unbearable (resection?)
- < 6% will achieve CR for recurrent/metastatic GIST while receiving imatinib (combine with resection?)
- ~20% of recurrent/metastatic disease patients are resectable; if resectable, R0/R1 margins achieved in 48-91%
- Remain on imatinib indefinitely if R0/R1 resection of recurrent/metastatic disease achieved

Recurrent / metastatic GIST: role of/indications for surgery

- R0/R1 resection of stable or shrinking residual disease on imatinib before disease progression: better prognosis
- Resection 6-12 months after start of imatinib: better prognosis; ~ 2 years to develop secondary resistance (EORTC)
- R0/R1: OS = 8.7 years; R2: OS = 5.3 years (EORTC)
- Emergency: bleeding, perforation, obstruction, abscess
- Disease in more than 1 organ system: worse prognosis
- Liver only mets: better prognosis than peritoneal mets
- wt kit or PDGFR mut GIST have indolent metastatic disease course; role of surgery vs imatinib/no further surgery vs observation alone?


GIST radiographic response to neoadj. imatinib

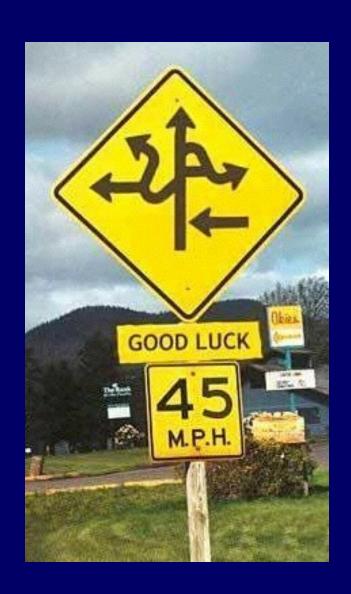
	Patients with locally advanced primary GIST ^a	Patients with recurrent or metastatic GIST	
Response		Complete resection	Incomplete resection
Complete response (no., %)	1 (9%)	0 (0%)	0 (0%)
Partial response (no., %)	8 (73%)	10 (91%)	1 (4%)
Continuous regression (no.)	4	2	0
Initial regression then stable disease (no.)	4	8	1
Stable disease (no., %)	1 (9%)	0 (0%)	0 (0%)
Progressive disease (no., %)	1 (9%)	1 (9%)	23 (96%)
Initial regression then progression (no.)	0	0	18
Continuous progression (no.)	1	1	5


Neoadjuvant imatinib partial response is associated with complete resection

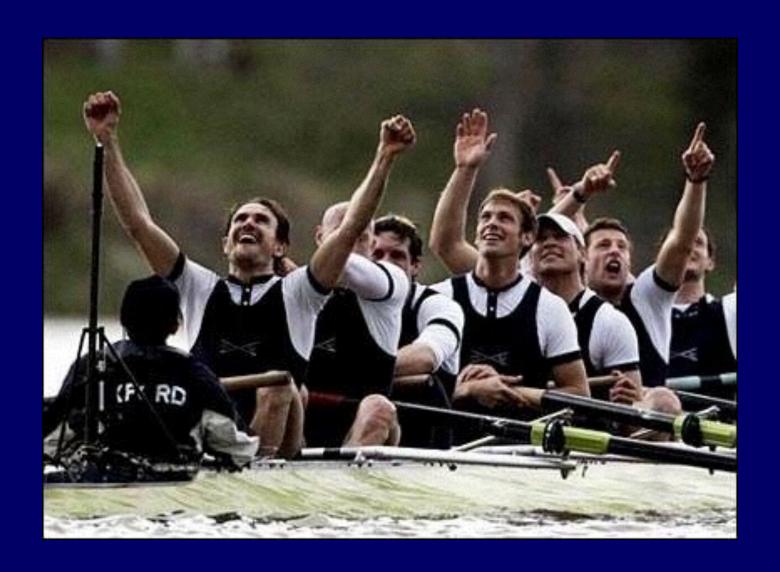
Antbacka; 2006

RFS and OS after surgical therapy for recurrent/metastatic/locally advanced GIST

RFS and OS after surgical therapy for recurrent/metastatic/locally advanced GIST txed w/neoadjuvant TKI (radiographic response)


Multivariate analysis: recurrent/locally advanced/metastatic GIST RFS

	HR	95 % CI	p value
Age <60 years	Ref	_	_
Age 60+ years	2.10	0.99-4.44	0.05
Female	Ref	-	-
Male	1.58	0.79 - 3.17	0.20
Tumor size <5.0 cm	Ref	-	-
Tumor size ≥5.0 cm	1.84	0.86 - 3.92	0.12
Mitotic rate group			
≤5/50 HPF	Ref		
>5/50 HPF	3.42	1.61 - 7.28	0.001
Open	Ref	-	-
MIS	0.70	0.30 - 1.64	0.42
Margin R0	Ref		
Margin R1 or R2	1.28	0.44 - 3.76	0.65
No neoadjuvant TKI	Ref		
Neoadjuvant TKI	2.88	0.81-10.22	0.10
No adjuvant TKI	Ref		
Adjuvant TKI	0.52	0.22-1.23	0.14


Unresolved surgical controversies

- Management of GIST < 2 cm?
- Benefit of metastatectomy in TKI responders?
- Does antecedent RFS duration impact prognosis after metastatasectomy?
- Is there site specificity as an indicator or prognostic factor for metastatesectomy?
- Observe vs operate for metastasis in *wt* or *PDGFR* mut patients?
- How to surgically handle multifocal GIST?
- Benefit of resecting > than one contiguous organ?

So, although the pathway to progress in GIST is not clearly marked out...

By working together we will make things better!!

Many thanks to my Ohio State sarcoma colleagues!

<u>Pathology</u>

Hans Iwenofu, MD

Paul Wakely, MD

Radiation Oncology

Douglas Martin, MD

Meng Welliver, MD, PhD

Karl Haglund, MD

Medical Oncology

David Liebner, MD

James Chan, MD, PhD

Orthopedic Oncology

Thomas Scharschmidt, MD

Joel Mayerson, MD

Surgical Oncology

Harrison Howard, MD

Neurosurgery

Ehud Mendel, MD

P & RS

Ian Valerio, MD

Roman Skoracki, MD

Sarcoma Research Laboratory

Raphael Pollock, MD, PhD (Director)

Gonzalo Lopez, PhD (Post-doc)

Kate Lynn Bill, PhD (Post-doc)

Bethany Prudner, PhD (Post-doc)

Hemant Bid, PhD (Post-doc)

Abby Zewdu, BS (Pre-doc)

Danielle Braggio, PhD (Post-doc)

Kara Batte, PhD (Lab manager)

Anne Strohecker, PhD (Asst. Professor)

Dennis Guttridge, PhD (Professor)

Dina Lev, MD (Professor)

Thank you for your attention!

